Issue 16, 2022

Growth selectivity control of InAs shells on crystal phase engineered GaAs nanowires

Abstract

In this work we demonstrate a two-fold selectivity control of InAs shells grown on crystal phase and morphology engineered GaAs nanowire (NW) core templates. This selectivity occurs driven by differences in surface energies of the NW core facets. The occurrence of the different facets itself is controlled by either forming different crystal phases or additional tuning of the core NW morphology. First, in order to study the crystal phase selectivity, GaAs NW cores with an engineered crystal phase in the axial direction were employed. A crystal phase selective growth of InAs on GaAs was found for high growth rates and short growth times. Secondly, the facet-dependant selectivity of InAs growth was studied on crystal phase controlled GaAs cores which were additionally morphology-tuned by homoepitaxial overgrowth. Following this route, the original hexagonal cores with {110} sidewalls were converted into triangular truncated NWs with ridges and predominantly {112}B facets. By precisely tuning the growth parameters, the growth of InAs is promoted over the ridges and reduced over the {112}B facets with indications of also preserving the crystal phase selectivity. In all cases (different crystal phase and facet termination), selectivity is lost for extended growth times, thus, limiting the total thickness of the shell grown under selective conditions. To overcome this issue we propose a 2-step growth approach, combining a high growth rate step followed by a low growth rate step. The control over the thickness of the InAs shells while maintaining the selectivity is demonstrated by means of a detailed transmission electron microscopy analysis. This proposed 2-step growth approach enables new functionalities in 1-D structures formed by using bottom-up techniques, with a high degree of control over shell thickness and deposition selectivity.

Graphical abstract: Growth selectivity control of InAs shells on crystal phase engineered GaAs nanowires

Supplementary files

Article information

Article type
Paper
Submitted
16 Feb 2022
Accepted
23 Mar 2022
First published
08 Apr 2022
This article is Open Access
Creative Commons BY license

Nanoscale Adv., 2022,4, 3330-3341

Growth selectivity control of InAs shells on crystal phase engineered GaAs nanowires

V. J. Gómez, M. Marnauza, K. A. Dick and S. Lehmann, Nanoscale Adv., 2022, 4, 3330 DOI: 10.1039/D2NA00109H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements