Issue 10, 2022

Low-temperature characteristics of magnesium fluoride based bipolar RRAM devices

Abstract

This study investigates the temperature-independent switching characteristics of magnesium fluoride (MgFx) based bipolar resistive memory devices at temperatures ranging from 300 K down to 77 K. Filament type resistive switching at the interface of Ti/MgFx and the trap-controlled space charge limited conduction (SCLC) mechanism in the bulk MgFx layer are confirmed. The experimental results indicate that the operating environment and temperature critically control the resistive switching performance by varying the non-stoichiometry of the amorphous MgFx active layer and Ti/MgFx interface region. The gaseous atmosphere (open air or vacuum) affects device performances such as the electroforming process, on-state current, off-state current, on/off ratio, SET/RESET voltage and endurance of resistive-switching memory devices. After electroforming, the device performance is independent of temperature variation. The Ti/MgFx/Pt memory devices show promising data retention for >104 s in a vacuum at room temperature and 77 K with the DC endurance property for more than 150 cycles at 77 K. The devices have great potential for future temperature-independent electronic applications.

Graphical abstract: Low-temperature characteristics of magnesium fluoride based bipolar RRAM devices

Article information

Article type
Paper
Submitted
07 Sep 2021
Accepted
24 Dec 2021
First published
21 Feb 2022
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2022,14, 3738-3747

Low-temperature characteristics of magnesium fluoride based bipolar RRAM devices

N. C. Das, M. Kim, J. R. Rani, S. Hong and J. Jang, Nanoscale, 2022, 14, 3738 DOI: 10.1039/D1NR05887H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements