Photoregulative phase change biomaterials showing thermodynamic and mchanical stabilities†
Abstract
Azobenzenes are great photochromic molecules for switching the physical properties of various materials via trans–cis isomerization. However, the UV light resulted cis-azobenzene is metastable and thermodynamically gets back to trans-azobenzene after ceasing UV irradiation, which causes an unwanted property change of azobenzene-containing materials. Additionally, thermal and mechanical conditions would accelerate this process dramatically. In this present work, a new type of azobenzene-containing surfactant is designed for the fabrication of photoresponsive phase change biomaterials. With a “locked” cis-azobenzene conformation, the resulting biomaterials could maintain their disordered state after ceasing UV light, which exhibit great resistance to thermal and piezo conditions. Interestingly, the “locked” cis-azobenzene could be unlocked by Vis light in high efficiency, which opens a new way for the design of phase change materials only responding to light. By showing stable cis-azobenzene maintained physical state, the newly fabricated biomaterials provide new potential for the construction of advanced materials, like self-healing materials, with less use of long time UV irradiation for maintaining their disordered states.