Issue 6, 2022

Quantifying interfacial tensions of surface nanobubbles: How far can Young's equation explain?

Abstract

Nanobubbles at solid–liquid interfaces play a key role in various physicochemical phenomena and it is crucial to understand their unique properties. However, little is known about their interfacial tensions due to the lack of reliable calculation methods. Based on mechanical and thermodynamic insights, we quantified for the first time the liquid–gas, solid–liquid, and solid–gas interfacial tensions of submicron-sized nitrogen bubbles at graphite–water interfaces using molecular dynamics (MD) analysis. It was revealed that Young's equation holds even for nanobubbles with different radii. We found that the liquid–gas and solid–liquid interfacial tensions were not largely affected by the gas density inside the nanobubbles. In contrast, the size effect on the solid–gas interfacial tension was observed, namely, the value dramatically decreased upon an increase in the gas density due to gas adsorption on the solid surface. However, our quantitative evaluation also revealed that the gas density effect on the contact angles is negligible when the footprint radius is larger than 50 nm, which is a typical range observed in experiments, and thus the flat shape and stabilization of submicron-sized surface bubbles observed in experiments cannot be explained only by the changes in interfacial tensions due to the van der Waals interaction-induced gas adsorption, namely by Young's equation without introducing the pinning effect. Based on our analysis, it was clarified that additional factors such as the differences in the studied systems are needed to explain the unresolved open issues – a satisfactory explanation for the nanobubbles in MD simulations being ultradense, non-flat, and stable without pinning.

Graphical abstract: Quantifying interfacial tensions of surface nanobubbles: How far can Young's equation explain?

Supplementary files

Article information

Article type
Paper
Submitted
09 Nov 2021
Accepted
04 Jan 2022
First published
05 Jan 2022
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2022,14, 2446-2455

Quantifying interfacial tensions of surface nanobubbles: How far can Young's equation explain?

H. Teshima, H. Kusudo, C. Bistafa and Y. Yamaguchi, Nanoscale, 2022, 14, 2446 DOI: 10.1039/D1NR07428H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements