Issue 20, 2022

A theory of skyrmion crystal formation

Abstract

A generic theory about skyrmion crystal (SkX) formation in chiral magnetic thin films and its fascinating thermodynamic behaviours is presented. A chiral magnetic film can have many metastable states with an arbitrary skyrmion density up to a maximal value when the parameter κ, which measures the relative Dzyaloshinskii–Moriya interaction (DMI) strength, is large enough. The lowest energy state of an infinite film is a long zig-zag ramified stripe skyrmion occupying the whole film in the absence of a magnetic field. Under an intermediate field perpendicular to the film, the lowest energy state has a finite skyrmion density. This is why a chiral magnetic film is often in a stripy state at a low field and a SkX only around an optimal field when κ is above a critical value. The lowest energy state is still a stripy helical state no matter with or without a field when κ is below the critical value. The multi-metastable states explain the thermodynamic path dependences of the various metastable states of a film. The decrease of the κ value with the temperature explains why SkXs become metastable at low temperatures in many skyrmion systems. These findings open a new avenue for SkX manipulation and skyrmion-based applications.

Graphical abstract: A theory of skyrmion crystal formation

Supplementary files

Article information

Article type
Paper
Submitted
07 Mar 2022
Accepted
13 Apr 2022
First published
13 Apr 2022
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2022,14, 7516-7529

A theory of skyrmion crystal formation

X. Hu, H. Wu and X. R. Wang, Nanoscale, 2022, 14, 7516 DOI: 10.1039/D2NR01300B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements