Ultra-stable two-dimensional metal–organic frameworks for photocatalytic H2 production†
Abstract
Two-dimensional (2D) metal–organic frameworks (MOFs) are some of the most promising photocatalysts owing to their high numbers of exposed active sites and excellent charge mobility. However, the synthesis of highly stable 2D MOF photocatalysts involves challenges, and examples have been rarely reported. Herein, a new kind of material, 2D indium-based porphyrin MOF cubic nanosheets (2D In-TCPP NS) with an average thickness of ∼3.97 nm, is synthesized via a surfactant-assisted approach, and it shows good chemical stability in the pH range of 2–11 in aqueous solution. In photocatalytic H2-generation experiments, 2D In-TCPP NS exhibits activity that is enhanced by over one order of magnitude compared with the 3D bulk In-TCPP MOF, arising from its highly enhanced electron–hole separation abilities. Moreover, after 40 h of continuous photocatalysis testing, 2D In-TCPP NS shows nearly no activity decrease, which suggests its great potential for practical commercial use.