Issue 24, 2022

Wearable anti-temperature interference strain sensor with metal nanoparticle thin film and hybrid ligand exchange

Abstract

Anti-interference characteristics, whereby undesirable signal interference is minimized, are required for multifunctional sensor platforms. In this study, an anti-temperature-interference resistive-type strain sensor, which does not respond to temperature but only to strain, is designed. Anti-interference properties were achieved by modulating the temperature coefficient of resistance (TCR) of metal nanoparticles (NPs) through hybrid chemical treatment with organic and halide ligands that induce negative and positive TCRs, respectively. Consequently, a very low TCR of 1.9 × 10−5 K−1 was obtained. To investigate the origin of this near-zero TCR, analyses of correlated electrical, thermal, and mechanical properties were performed in addition to structural characterization and analysis. Density functional theory calculations and electrical percolation modeling were performed to illuminate the transport behavior in the near-zero-TCR NP thin films. Finally, we fabricated a high-performance anti-temperature-interference strain sensor using a solution process. The sensors detect a variety of strains, including those arising from large movements, such as wrist and knee movements, and fine movements, such as artery pulses or movements made during calligraphy, and did not respond to temperature changes.

Graphical abstract: Wearable anti-temperature interference strain sensor with metal nanoparticle thin film and hybrid ligand exchange

Supplementary files

Article information

Article type
Paper
Submitted
02 May 2022
Accepted
25 May 2022
First published
05 Jun 2022

Nanoscale, 2022,14, 8628-8639

Wearable anti-temperature interference strain sensor with metal nanoparticle thin film and hybrid ligand exchange

Y. K. Choi, T. Park, D. H. D. Lee, J. Ahn, Y. H. Kim, S. Jeon, M. J. Han and S. J. Oh, Nanoscale, 2022, 14, 8628 DOI: 10.1039/D2NR02392J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements