Plasmonic photocatalysis in aqueous solution: assessing the contribution of thermal effects and evaluating the role of photogenerated ROS†
Abstract
Plasmon-induced photocatalysis can drive photochemical processes with an unprecedented control of reactivity, using light as sole energy source. Nevertheless, disentangling the relative importance of thermal and non-thermal features upon plasmonic excitation remains a difficult task. In this work we intend to separate the role played by the photogenerated charge carriers from thermal mechanisms in the plasmonic photo-oxidation of a model organic substrate in aqueous solution and using a metal–semiconductor hybrid as model photocatalyst. Accordingly, we present a simple set of experimental procedures and simulations that allow us to discard the thermal dissipation upon plasmonic excitation as the main driving force behind these chemical reactions. Moreover, we also study the photogeneration of reactive oxygen species (ROS), discussing their fundamental role in photo-oxidation reactions and the information they provide regarding the reactivity of the photogenerated electrons and holes.