Issue 29, 2022

Structure and magnetization of a magnetoactive ferrocomposite

Abstract

This work is devoted to the theoretical study of the structural and magnetic properties of an ensemble of single-domain interacting magnetic nanoparticles immobilized in a non-magnetic medium. This model is typical for describing magnetically active soft materials, “smart” polymer ferrocomposites, which have been applied in science-intensive industrial and biomedical technologies. It is assumed that the ferrocomposite is obtained by solidification of the carrier medium in a ferrofluid under an external magnetic field, the intensity of which is determined by the Langevin parameter αp; after the solidification of the carrier liquid, the nanoparticles retain the spatial distribution and orientation of their easy magnetization axes. The features of the orientational texture formed in the sample are analyzed depending on the intensity of the magnetic field αp and interparticle dipole–dipole interactions. The magnetization of a textured ferrocomposite in the magnetic field α is also investigated. Our results show that in the case of a co-directional arrangement of the considered fields and if α < αp, the ferrocomposites are magnetized much more efficiently than ferrofluids due to their texture. In the fields α > αp, the ferrocomposite is magnetized less efficiently than the ferrofluid due to the internal magnetic anisotropy of the nanoparticles. The analytical expressions presented here make it possible to predict the magnetization of a ferrocomposite depending on its internal structure and synthesis conditions, which is the theoretical basis for the synthesis of ferrocomposites with a predetermined magnetic response in a given magnetic field.

Graphical abstract: Structure and magnetization of a magnetoactive ferrocomposite

Article information

Article type
Paper
Submitted
11 May 2022
Accepted
23 Jun 2022
First published
24 Jun 2022

Nanoscale, 2022,14, 10493-10505

Structure and magnetization of a magnetoactive ferrocomposite

D. I. Radushnov, A. Yu. Solovyova and E. A. Elfimova, Nanoscale, 2022, 14, 10493 DOI: 10.1039/D2NR02605H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements