Clinical big-data-based design of GLUT2-targeted carbon nanodots for accurate diagnosis of hepatocellular carcinoma†
Abstract
Despite advances in diagnostic and therapeutic methods, the prognosis of patients with hepatocellular carcinoma (HCC) remains poor due to the delay in diagnosis. Herein, we aimed to discover a highly sensitive and specific biomarker for HCC based on genomic big data analysis and create an HCC-targeted imaging probe using carbon nanodots (CNDs) as contrast agents. In genomic analysis, we selected glucose transporter 2 (GLUT2) as a potential imaging target for HCC. We confirmed the target suitability by immunohisto-chemistry tests of 339 patient samples, where 81.1% of the patients exhibited underexpression of GLUT2, i.e., higher GLUT2 intensity in non-tumor tissues than in tumor tissues. To visualize GLUT2, we conjugated CNDs with glucosamine (GLN) as a targeting ligand to yield glucosamine-labeled CNDs (GLN-CNDs). A series of in vitro and in vivo experiments were conducted on GLUT2-modified HepG2 cells to confirm the specificity of the GLN-CNDs. Since the GLUT2 expression is higher in hepatocytes than in HCC cells, the GLUT2-targeted contrast agent is highly attached to normal cells. However, it is possible to produce images in the same form as the images obtained with a cancer cell-targeted contrast agent by inverting color scaling. Our results indicate that GLUT2 is a promising target for HCC and that GLN-CNDs may potentially be used as targeted imaging probes for diagnosing HCC.