Issue 7, 2022, Issue in Progress

Hollow terbium metal–organic-framework spheres: preparation and their performance in Fe3+ detection

Abstract

Hollow metal–organic framework (MOF) micro/nanostructures have been attracting a great amount of research interest in recent years. However, the synthesis of hollow metal–organic frameworks (MOFs) is a great challenge. In this paper, by using 1,3,5-benzenetricarboxylic acid (H3BTC) as the organic ligand and 2,5-thiophenedicarboxylic acid (H2TDC) as the competitive ligand and protective agent, hollow terbium MOFs (Tb-MOFs) spheres were synthesized by a one-pot solvothermal method. By comparing the morphology of Tb-MOFs in the presence and absence of H2TDC, it is found that H2TDC plays a key role in the formation of the hollow spherical structure. Single crystal analyses and element analysis confirm that H2TDC is not involved in the coordination with Tb3+. Interestingly, Tb-MOFs can be used as the luminescent probes for Fe3+ recognition in aqueous and N,N-dimethylformamide (DMF) solutions. In aqueous solution, the quenching constant (KSV) is 5.8 × 10−4 M−1, and the limit of detection (LOD) is 2.05 μM. In DMF, the KSV and LOD are 9.5 × 10−4 M−1 and 0.80 μM, respectively. The sensing mechanism is that the excitation energy absorption of Fe3+ ions reduces the energy transfer efficiency from the ligand to Tb3+ ions.

Graphical abstract: Hollow terbium metal–organic-framework spheres: preparation and their performance in Fe3+ detection

Supplementary files

Article information

Article type
Paper
Submitted
04 Nov 2021
Accepted
22 Jan 2022
First published
01 Feb 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 4153-4161

Hollow terbium metal–organic-framework spheres: preparation and their performance in Fe3+ detection

X. Yang, Y. Liang, W. Feng, C. Yang, L. Wang, G. Huang and D. Wang, RSC Adv., 2022, 12, 4153 DOI: 10.1039/D1RA08088A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements