Issue 6, 2022

Potential outstanding physical properties of novel black arsenic phosphorus As0.25P0.75/As0.75P0.25 phases: a first-principles investigation

Abstract

Black arsenic phosphorus As0.5P0.5 has been studied as an excellent candidate for electronic and optoelectronic applications. At the same time, the physical properties of AsxP1−x alloys with other compositions were not investigated. In this work, we design seven As0.25P0.75(P-I and P-II)/As0.75P0.25(As-(I, II, III, IV and V)) phases with molecular dynamics stability. First principles calculations are used to study their electronic structures under strain as well as their carrier mobilities. By calculating Perdew–Burke–Ernzerhof (PBE) electronic bands, we reveal that these materials are direct-gap semiconductors similar to black phosphorus except for the As-IV phase. It is also found that the carrier mobility in the P-I and As-V phases can reach 104 cm2 V−1 s−1. The electronic structures of the P-I, As-IV and As-V phases under strain are studied. Finally, we design caloritronic devices based on armchair and zigzag nanoribbons. The value of the Seebeck coefficient of the armchair and zigzag devices made from the P-II phases are found to be as high as 2507 and 2005 μW K−1 at 300 K. The thermal properties of the arsenic phosphorus phases under consideration are further studied by calculating their thermoelectric figure of merit, ZT values. These values are as high as 10.88 for the armchair devices based on the As-III phase and 4.59 for the zigzag devices based on the As-V phase at room temperature, and 15 and 7.16 at 600 K, respectively. The obtained results demonstrate that the As0.25P0.75/As0.75P0.25 phases studied here can be regarded as potential candidates for thermoelectric and electronic device applications.

Graphical abstract: Potential outstanding physical properties of novel black arsenic phosphorus As0.25P0.75/As0.75P0.25 phases: a first-principles investigation

Article information

Article type
Paper
Submitted
07 Nov 2021
Accepted
24 Jan 2022
First published
28 Jan 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 3745-3754

Potential outstanding physical properties of novel black arsenic phosphorus As0.25P0.75/As0.75P0.25 phases: a first-principles investigation

F. Liu, X. Zhang, P. Gong, T. Wang, K. Yao, S. Zhu and Y. Lu, RSC Adv., 2022, 12, 3745 DOI: 10.1039/D1RA08154C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements