Issue 13, 2022, Issue in Progress

Synthesis of surface-modified iron oxide nanocrystals using supercritical carbon dioxide as the reaction field

Abstract

In the synthesis of surface-modified nanocrystals (NCs), a simple and green chemistry approach to reduce liquid waste, particularly a solventless process, has been desired. In this study, we applied the supercritical CO2 technology, which is an excellent solventless process, to the synthesis of surface-modified iron oxide NCs. The synthesis was performed at 30.0 ± 0.8 MPa of CO2, 18 h and 100 °C, where iron(III) acetylacetonate, pure water and decanoic acid were used as starting materials. As a result, the supercritical CO2 medium gave the NCs of α-Fe2O3 and γ-Fe2O3 with unimodal size distribution, where the mean size was 7.8 ± 2.0 nm. In addition, they were self-assembled on the TEM substrate and the mean nearest-neighbor spacing was close to the chain length of decanoic acid. Furthermore, FT-IR and TG analyses indicate that decanoic acid chemically attaches to the surface of iron oxide NCs that are dispersed in cyclohexane. These results suggest that the supercritical CO2 medium could be the new appealing reaction field to fabricate densely modified NCs without liquid waste.

Graphical abstract: Synthesis of surface-modified iron oxide nanocrystals using supercritical carbon dioxide as the reaction field

Article information

Article type
Paper
Submitted
23 Nov 2021
Accepted
25 Feb 2022
First published
11 Mar 2022
This article is Open Access
Creative Commons BY license

RSC Adv., 2022,12, 7990-7995

Synthesis of surface-modified iron oxide nanocrystals using supercritical carbon dioxide as the reaction field

Y. Orita, K. Kariya, T. Wijakmatee and Y. Shimoyama, RSC Adv., 2022, 12, 7990 DOI: 10.1039/D1RA08580H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements