Issue 6, 2022, Issue in Progress

Tailoring biocompatibility of composite scaffolds of collagen/guar gum with metal–organic frameworks

Abstract

Metal–organic frameworks (MOFs) are microporous materials with high potential for biomedical applications. They are useful as drug delivery systems, antibacterials, and biosensors. Recently, composite materials comprised of polymer matrixes and MOFs have gained relevance in the biomedical field due to their high potential as materials to accelerate wound healing. In this work, we studied the potential applications of composite hydrogels containing MgMOF74, CaMOF74, and Zn(Atz)(Py). The composite hydrogels are biodegradable, being completely degraded after 15 days by the action of collagenase and papain. The composites showed high biocompatibility reaching cell viabilities up to 165.3 ± 8.6% and 112.3 ± 12.8% for porcine fibroblasts and human monocytes, respectively. The composites did not show hemolytic character and they showed antibacterial activity against Escherichia coli reaching up to 84 ± 5% of inhibition compared with amoxicillin (20 ppm). Further, the immunological assays revealed that the composites produce a favorable cell signaling stimulating the secretion of the TGF-β and MCP-1 cytokines and maintaining the secretion of TNF-α in normal levels. Finally, the composites showed potential to be used as controlled drug delivery systems reaching a release efficiency of 30.5 ± 2.5% for ketorolac. Finally, results revealed that ColGG-Zn(Atz)(Py) was the best formulation evaluated.

Graphical abstract: Tailoring biocompatibility of composite scaffolds of collagen/guar gum with metal–organic frameworks

Article information

Article type
Paper
Submitted
03 Dec 2021
Accepted
17 Jan 2022
First published
27 Jan 2022
This article is Open Access
Creative Commons BY license

RSC Adv., 2022,12, 3672-3686

Tailoring biocompatibility of composite scaffolds of collagen/guar gum with metal–organic frameworks

M. Caldera-Villalobos, D. A. Cabrera-Munguía, J. J. Becerra-Rodríguez and J. A. Claudio-Rizo, RSC Adv., 2022, 12, 3672 DOI: 10.1039/D1RA08824F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements