Issue 20, 2022, Issue in Progress

Regioselective C-3-alkylation of quinoxalin-2(1H)-ones via C–N bond cleavage of amine derived Katritzky salts enabled by continuous-flow photoredox catalysis

Abstract

An efficient, transition metal-free visible-light-driven continuous-flow C-3-alkylation of quinoxalin-2(1H)-ones has been demonstrated by employing Katritzky salts as alkylating agents in the presence of eosin-y as a photoredox catalyst and DIPEA as a base at room temperature. The present protocol was accomplished by utilizing abundant and inexpensive alkyl amine (both primary and secondary alkyl) and as well as this a few amino acid feedstocks were converted into their corresponding redox-active pyridinium salts and subsequently into alkyl radicals. A wide variety of C-3-alkylated quinoxalin-2(1H)-ones were synthesized in moderate to high yields. Further this environmentally benign protocol is carried out in a PFA (Perfluoroalkoxy alkane) capillary based micro reactor under blue LED irradiation, enabling excellent yields (72% to 91%) and shorter reaction times (0.81 min) as compared to a batch system (16 h).

Graphical abstract: Regioselective C-3-alkylation of quinoxalin-2(1H)-ones via C–N bond cleavage of amine derived Katritzky salts enabled by continuous-flow photoredox catalysis

Supplementary files

Article information

Article type
Paper
Submitted
04 Feb 2022
Accepted
24 Mar 2022
First published
29 Apr 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 12235-12241

Regioselective C-3-alkylation of quinoxalin-2(1H)-ones via C–N bond cleavage of amine derived Katritzky salts enabled by continuous-flow photoredox catalysis

G. Kishor, V. Ramesh, V. R. Rao, S. Pabbaraja and P. R. Adiyala, RSC Adv., 2022, 12, 12235 DOI: 10.1039/D2RA00753C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements