Crystal growth, layered structure and luminescence properties of K2Eu(PO4)(WO4)†
Abstract
K2Eu(PO4)(WO4) has been prepared via the high-temperature solution growth (HTSG) method using K2WO4–KPO3 molten salts as a self-flux and characterized by single-crystal X-ray diffraction analysis, IR and luminescence spectroscopy. The structure of this new compound features a 2D framework containing [EuPO6]4− layers, which are composed of zigzag chains of [EuO8]n interlinked by slightly distorted PO4 tetrahedra. Isolated WO4 tetrahedra are attached above and below these layers, leaving space for the K+ counter-cations. The photoluminescence (PL) characteristics (spectra, line intensity distribution and decay kinetics) confirm structural data concerning one distinct position for europium ions. The luminescence color coordinates suggest K2Eu(PO4)(WO4) as an efficient red phosphor for lighting applications.