Issue 22, 2022, Issue in Progress

Realizing outstanding electrochemical performance with Na3V2(PO4)2F3 modified with an ionic liquid for sodium-ion batteries

Abstract

Na3V2(PO4)2F3 is a typical NASICON structure with a high voltage plateau and capacity. Nevertheless, its applications are limited due to its low conductivity and poor rate performance. In this study, nitrogen–boron co-doped carbon-coated Na3V2(PO4)2F3 (NVPF-CNB) was prepared by a simple sol–gel method using an ionic liquid (1-vinyl-3-methyl imidazole tetrafluoroborate) as a source of nitrogen and boron for the first time. The morphology and electrochemical properties of NVPF-CNB composites were investigated. The results show that a nitrogen–boron co-doped carbon layer could increase the electron and ion diffusion rate, reduce internal resistance, and help alleviate particle agglomeration. NVPF-CNB-30 exhibited better rate performance under 5C and 10C charge/discharge with initial reversible capacities of 99 and 90 mA h g−1, respectively. Furthermore, NVPF-CNB-30 illustrates excellent cyclic performance with the capacity retention rate reaching 91.9% after 500 cycles at 5C, as well as a capacity retention rate of about 95.5% after 730 cycles at 10C. The evolution of the material's structure during charge/discharge processes studied by in situ X-ray diffraction confirms the stable structure of nitrogen–boron co-doped carbon-coated Na3V2(PO4)2F3. Co-doping of nitrogen and boron also provides more active sites on the surface of Na3V2(PO4)2F3, revealing a new strategy for the modification of sodium-ion batteries.

Graphical abstract: Realizing outstanding electrochemical performance with Na3V2(PO4)2F3 modified with an ionic liquid for sodium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
28 Feb 2022
Accepted
01 May 2022
First published
11 May 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 14007-14017

Realizing outstanding electrochemical performance with Na3V2(PO4)2F3 modified with an ionic liquid for sodium-ion batteries

X. Yu, T. Lu, X. Li, J. Qi, L. Yuan, Z. Man and H. Zhuo, RSC Adv., 2022, 12, 14007 DOI: 10.1039/D2RA01292H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements