Issue 35, 2022

Recurrent neural network (RNN) model accelerates the development of antibacterial metronidazole derivatives

Abstract

Metronidazole is a specific drug against trichomonas and anaerobic bacteria, and is widely used in the clinic. However, extensive clinical application is often accompanied by extensive side effects, so it is still of great significance to develop metronidazole derivatives with a new skeleton. Compared with other traditional receptor-based drug design methods, the computational model based on a neural network has higher accuracy and reliability. In this work, a Recurrent Neural Network (RNN) model is applied to the discovery of metronidazole drugs with a new skeleton. Firstly, the generation model based on a Gated Recurrent Unit (GRU) is trained to generate an effective Simplified Molecular-Input Line-Entry System (SMILES) string library with high precision. Then, transfer learning is introduced to fine-tune the GRU model, and many molecules with structures similar to known active drugs are generated. After cluster analysis of the structures of the new compounds, 20 small molecular compounds with metronidazole structures of all different categories were selected, of which 19 may not belong to any published patents or applications. Through prediction and personal experience, the difficulty of synthesizing these 20 new structures was analyzed, and compound 0001 was chosen as our synthetic target, and a series of structures (8a–l) similar to compound 0001 were synthesized. Finally, the inhibitory activities of these compounds against bacteria E. coli, P. aeruginosa, B. subtilis and S. aureus were determined. The results showed that compound 8a–l had obvious inhibitory activity against these four bacteria, which proved the accuracy of our compound generation model.

Graphical abstract: Recurrent neural network (RNN) model accelerates the development of antibacterial metronidazole derivatives

Supplementary files

Article information

Article type
Paper
Submitted
20 Mar 2022
Accepted
26 Jul 2022
First published
15 Aug 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 22893-22901

Recurrent neural network (RNN) model accelerates the development of antibacterial metronidazole derivatives

N. Chen, L. Yang, N. Ding, G. Li, J. Cai, X. An, Z. Wang, J. Qin and Y. Niu, RSC Adv., 2022, 12, 22893 DOI: 10.1039/D2RA01807A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements