Array-based chemical warfare agent discrimination via organophosphorus-H2O2 reaction-regulated chemiluminescence
Abstract
It has been a challenge to achieve rapid, simple, and effective discrimination of organophosphorus nerve agents (typical chemical warfare agents) due to the similar chemical properties of the targets such as sarin, soman, cyclosarin and VX. In this study, we propose a chemiluminescence sensor array that can effectively discriminate organophosphorus nerve agents by organophosphorus-H2O2 reaction, which produces peroxyphosphonate intermediate and regulates the chemiluminescence intensity. A simple chemiluminescence sensor array based on different chemiluminescence characteristics of the four organophosphorus nerve agents in the luminol–H2O2 system and layered double hydroxide–luminol–H2O2 system has been constructed. Four agents can be well distinguished at a concentration of 1.0 mg L−1 when linear discriminant analyses and hierarchical cluster analyses are smartly combined. The high accuracy (100%) evaluation of 20 blind samples demonstrates the practicability of this proposed chemiluminescence sensor array.