Issue 32, 2022, Issue in Progress

Conversion of coal into N-doped porous carbon for high-performance SO2 adsorption

Abstract

The large-scale burning of coal has led to increasingly serious SO2 environmental pollution problems. The SO2 adsorption and removal technology based on porous carbons has the advantages of less water consumption, no secondary pollution, recycling of pollutants, and renewable utilization of adsorbents, in contrast to the wet desulfurization process. In this work, we developed a series of N-doped coal-based porous carbons (NCPCs) by calcining a mixture of anthracite, MgO, KOH and carbamide at 800 °C. Among them, the NCPC-2 sample achieves a high N-doped amount of 1.29 at%, and suitable pores with a specific surface area of 1370 m2 g−1 and pore volume of 0.62 cm3 g−1. This N-doped porous carbon exhibits excellent SO2 adsorption capacity as high as 115 mg g−1, which is 3.47 times that of commercial coal-based activated carbon, and 2 times that of NCPC-0 without N-doping. Theoretical calculations show that the active adsorption sites of SO2 are located at the edges and gaps of carbon materials, and surface N doping enhances the adsorption affinity of carbon materials for SO2. In addition, the NCPCs prepared in this work are rich in raw materials and cheap, which meets the needs of industrial production, having excellent SO2 adsorption capacity.

Graphical abstract: Conversion of coal into N-doped porous carbon for high-performance SO2 adsorption

Article information

Article type
Paper
Submitted
16 May 2022
Accepted
27 Jun 2022
First published
18 Jul 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 20640-20648

Conversion of coal into N-doped porous carbon for high-performance SO2 adsorption

Q. Wang, L. Han, Y. Wang, Z. He, Q. Meng, S. Wang, P. Xiao and X. Jia, RSC Adv., 2022, 12, 20640 DOI: 10.1039/D2RA03098E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements