Issue 35, 2022

Efficient and stable perovskite solar cells using manganese-doped nickel oxide as the hole transport layer

Abstract

Organic/inorganic hybrid perovskite solar cells (PSCs) have represented a promising field of renewable energy in recent years due to the compelling advantages of high efficiency, facile fabrication process and low cost. The development of inorganic p-type metal oxide materials plays an important role in the performance and stability of PSCs for commercial purposes. Herein a facile and effective way to improve hole extraction and conductivity of NiOx films by manganese (Mn) doping is demonstrated in this study. A Mn-doped NiOx layer was prepared by the sol–gel process and served as the hole transport layer (HTL) in inverted PSCs. The results suggest that Mn-doped NiOx is helpful for the growth of perovskite layers with larger grains and higher crystallinity compared with the pristine NiOx. Furthermore, the perovskite films deposited on Mn-doped NiOx exhibit lower recombination and shorter carrier lifetime. The device based on 0.5 mol% Mn-doped NiOx as the HTL displayed the best power conversion efficiency (PCE) of 17.35% and a high fill factor (FF) of 81%, which were significantly higher than those of the one using the pristine NiOx HTL (PCE = 14.71%, FF = 73%). Moreover, the device retained 70% of its initial efficiency after 35 days' storage under a continuous halogen lamp matrix exposure with an illumination intensity of 1000 W m−2. Our results widen the development of PSCs for future production.

Graphical abstract: Efficient and stable perovskite solar cells using manganese-doped nickel oxide as the hole transport layer

Supplementary files

Article information

Article type
Paper
Submitted
01 Jun 2022
Accepted
09 Aug 2022
First published
16 Aug 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 22984-22995

Efficient and stable perovskite solar cells using manganese-doped nickel oxide as the hole transport layer

Y. Wu, C. Chang, F. Chiu and S. Yang, RSC Adv., 2022, 12, 22984 DOI: 10.1039/D2RA03411E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements