Issue 37, 2022, Issue in Progress

Green synthesis of coumarin derivatives using Brønsted acidic pyridinium based ionic liquid [MBSPy][HSO4] to control an opportunistic human and a devastating plant pathogenic fungus Macrophomina phaseolina

Abstract

An eco-friendly simple protocol has been devised for the preparation of coumarin derivatives using doubly Brønsted acidic task specific ionic liquid (TSIL) as a catalyst. Solvent-free conditions were employed for the reaction of different substituted phenols with β-ketoester in TSIL to produce corresponding substituted coumarin derivatives in good to excellent yields at ambient conditions; at room temperature and with reduced reaction times. The ionic liquid catalyst can be recycled and reused up to five times. All the synthesized coumarins were evaluated for their antifungal activities against Macrophomina phaseolina, a plant as well as an opportunistic human pathogenic fungus affecting more than 500 plant species worldwide and with no registered commercial fungicide available against it, to date. Amongst all the coumarins tested, compounds 3f and 3i showed excellent antifungal activity comparable to reference fungicide mancozeb. The current methodology provides an easy and expedient way to access the coumarin core in search of potential fungicides for sustainable agriculture.

Graphical abstract: Green synthesis of coumarin derivatives using Brønsted acidic pyridinium based ionic liquid [MBSPy][HSO4] to control an opportunistic human and a devastating plant pathogenic fungus Macrophomina phaseolina

Supplementary files

Article information

Article type
Paper
Submitted
19 Jun 2022
Accepted
05 Aug 2022
First published
24 Aug 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 23963-23972

Green synthesis of coumarin derivatives using Brønsted acidic pyridinium based ionic liquid [MBSPy][HSO4] to control an opportunistic human and a devastating plant pathogenic fungus Macrophomina phaseolina

M. Uroos, A. Javaid, A. Bashir, J. Tariq, I. H. Khan, S. Naz, S. Fatima and M. Sultan, RSC Adv., 2022, 12, 23963 DOI: 10.1039/D2RA03774B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements