Effect of flaxseed gum on the brittleness of oleogels based on candelilla wax†
Abstract
The present study aimed to decrease the brittleness of flaxseed oleogels based on candelilla wax (CLW) in combination with flaxseed gum (FG). Effects of flaxseed gum concentrations (0–0.4%) on the characteristics of flaxseed oleogels including oil binding capacity, textural, thermal, and rheological properties, and crystal polymorphisms were investigated. Higher concentrations (≥0.2%) of FG significantly decreased the textural parameters (e.g., hardness, fracturability) of oleogels (p < 0.05), suggesting that FG could decrease brittleness. Rheological results indicated that all flaxseed oleogels exhibited solid-like characteristics because the elastic modulus was larger than the viscous modulus. The elastic modulus of flaxseed oleogels presented a maximum value at 0.1% gum concentration. Any increase in gum concentration beyond this concentration decreased the elastic modulus. Increasing FG concentration up to 0.4% decreased the enthalpy of flaxseed oleogels during the melting process. The β′-polymorphic form is an orthorhombic perpendicular (O⊥) subcell structure. Similar β′ crystal forms were observed among flaxseed oleogels, indicating that FG did not affect them negatively. The study showed that the physical properties of flaxseed oleogels based on CLW could be significantly changed by FG addition. These results provided a deeper comprehension of the novel system, which should be considered a new way to obtain healthy fats with better plasticity for food applications.