Issue 39, 2022, Issue in Progress

High-performance electromagnetic wave absorption in cobalt sulfide flower-like nanospheres

Abstract

A heterophase cobalt sulfide absorbing material with petal-like surface structure was prepared by a simple hydrothermal method. The cobalt sulfide sample with the optimal microwave absorption capacity was achieved through regulating the reaction temperature. By regulating the reaction temperature to 200 °C, the optimal reflection loss was −48.4 dB at 16.8 GHz with filler loading of 50%, and the effective absorption bandwidth was 4.3 GHz at Ku band corresponding to a thickness of only 1.5 mm. The petal-like surface structure of cobalt sulfide gradually disappears as the reaction temperature rises, and the reduction of specific surface area has a negative effect on the microwave absorption capacity of the sample. Meanwhile, by adjusting the sample thickness from 1.5 to 5.0 mm, the effective absorption bandwidth could cover almost the whole test frequency range. The results show that the cobalt sulfide absorbing material with regulated reaction temperature has a strong electromagnetic wave absorption ability, light weight, thin thickness and simple synthesis, which is a promising microwave absorbing material for actual application.

Graphical abstract: High-performance electromagnetic wave absorption in cobalt sulfide flower-like nanospheres

Article information

Article type
Paper
Submitted
30 Jul 2022
Accepted
29 Aug 2022
First published
07 Sep 2022
This article is Open Access
Creative Commons BY license

RSC Adv., 2022,12, 25323-25331

High-performance electromagnetic wave absorption in cobalt sulfide flower-like nanospheres

H. Yuan, Z. Liu, Y. Zhang, J. Ding, Y. Sun, M. Zhang and S. Tan, RSC Adv., 2022, 12, 25323 DOI: 10.1039/D2RA04764K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements