Issue 51, 2022, Issue in Progress

Potent antibacterial activity of MXene–functionalized graphene nanocomposites

Abstract

Two dimensional (2D) nanomaterials display properties with significant biological utility (e.g., antimicrobial activity). In this study, MXene–functionalized graphene (FG) nanocomposites with Ti3C2Tx in varying ratios (FG : Ti3C2Tx, 25 : 75%, 50 : 50%, and 75 : 25%) were prepared and characterized via scanning electron microscopy, scanning electron microscopy-energy dispersive X-ray (SEM-EDX), high-resolution transmission electron microscopy (HRTEM), and zeta potential analysis. Their cytotoxicity was assessed using immortalized human keratinocytes (HaCaT) cells at three different timepoints, and antibacterial activity was assessed using Gram-positive Methicillin resistant Staphylococcus aureus, MRSA, and Gram-negative neuro-pathogenic Escherichia coli K1 (E. coli K1) in vitro. The nanomaterials and composites displayed potent antibacterial effects against both types of bacteria and low cytotoxicity against HaCaT cells at 200 μg mL−1, which is promising for their utilization for biomedical applications.

Graphical abstract: Potent antibacterial activity of MXene–functionalized graphene nanocomposites

Article information

Article type
Paper
Submitted
08 Aug 2022
Accepted
11 Oct 2022
First published
18 Nov 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 33142-33155

Potent antibacterial activity of MXene–functionalized graphene nanocomposites

M. S. Salmi, U. Ahmed, N. Aslfattahi, S. Rahman, J. G. Hardy and A. Anwar, RSC Adv., 2022, 12, 33142 DOI: 10.1039/D2RA04944A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements