Issue 54, 2022, Issue in Progress

Polyethyleneimine-assisted co-deposition of polydopamine coating with enhanced stability and efficient secondary modification

Abstract

The stability and grafting efficiency are important for polydopamine (pDA) coatings used as platforms for secondary grafting. In this work, polyethyleneimine (PEI) was co-deposited with dopamine on various materials (PP, PTFE and PVC), then immersed in a 1.0 M HCl solution or 1.0 M NaOH solution to investigate the detachment of the coatings using UV-vis spectroscopy, SEM, FTIR spectroscopy and XPS, and the effect of PEI molecular weight on the secondary grafting of heparin on the pDA/PEI coating was investigated through clotting time tests. The results showed that the detachment rates of the pDA/PEI coating (14.6%, 23.7%) co-deposited on PTFE in 1.0 M HCl or 1.0 M NaOH solutions were both lower than that of the pDA coating (35.0%, 74.6%), indicating that pDA/PEI coatings could better remain on substrates in a 1.0 M NaOH solution. Besides, pDA/PEI coatings on a PP membrane with both a higher deposition density and stability could be obtained when the mass ratio of DA/PEI was 2 : 1–1 : 1 and PEI molecular weight was 600 Da. After grafting heparin, it was found that the pDA/PEI coating with lower molecular weight (600 Da and 1800 Da) PEI could achieve a higher grafting density of heparin with a longer clotting time. Thus, the results provided better understanding about the stability of pDA/PEI coatings and efficiency of heparin grafting.

Graphical abstract: Polyethyleneimine-assisted co-deposition of polydopamine coating with enhanced stability and efficient secondary modification

Supplementary files

Article information

Article type
Paper
Submitted
16 Aug 2022
Accepted
23 Nov 2022
First published
07 Dec 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 35051-35063

Polyethyleneimine-assisted co-deposition of polydopamine coating with enhanced stability and efficient secondary modification

C. Li, Q. Yang, D. Chen, H. Zhu, J. Chen, R. Liu, Q. Dang and X. Wang, RSC Adv., 2022, 12, 35051 DOI: 10.1039/D2RA05130C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements