Issue 10, 2022

Asymmetric β-arylation of cyclopropanols enabled by photoredox and nickel dual catalysis

Abstract

The enantioselective functionalization and transformation of readily available cyclopropyl compounds are synthetically appealing yet challenging topics in organic synthesis. Here we report an asymmetric β-arylation of cyclopropanols with aryl bromides enabled by photoredox and nickel dual catalysis. This dual catalytic transformation features a broad substrate scope and good functional group tolerance at room temperature, providing facile access to a wide array of enantioenriched β-aryl ketones bearing a primary alcohol moiety in good yields with satisfactory enantioselectivities (39 examples, up to 83% yield and 90% ee). The synthetic value of this protocol was illustrated by the concise asymmetric construction of natural product calyxolane B analogues.

Graphical abstract: Asymmetric β-arylation of cyclopropanols enabled by photoredox and nickel dual catalysis

Supplementary files

Article information

Article type
Edge Article
Submitted
28 Dec 2021
Accepted
16 Feb 2022
First published
17 Feb 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2022,13, 3020-3026

Asymmetric β-arylation of cyclopropanols enabled by photoredox and nickel dual catalysis

J. Wang and X. Li, Chem. Sci., 2022, 13, 3020 DOI: 10.1039/D1SC07237D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements