Issue 35, 2022

Synthesis and structure of the medium-pore zeolite PST-35 with two interconnected cages of unusual orthorhombic shape

Abstract

The search for new zeolite structures and compositions remains important in synthetic materials science due to the high impact on developing new chemical technologies, as well as on improving existing ones. Herein we present the synthesis and structure of PST-35, a novel medium-pore germanosilicate (Si/Ge = 2.1–6.6) zeolite, achieved by combining the excess fluoride approach and the unique structure directing ability of Ge in the presence of 1,2,3-triethylimidazolium ions as an organic structure-directing agent. PST-35 contains a zig-zag 10-ring (4.6 × 6.7 Å) channel system constructed of strictly alternating large 28-hedral ([48·58·68·82·102]) and smaller 18-hedral ([46·54·64·82·102]) cages of anomalous orthorhombic shape. The PST-35 structure is built from the connection of pst-35 layers consisting of small 8-hedral ([43·54·6]) cages, previously unobserved zeolite building layers, through single 4-rings.

Graphical abstract: Synthesis and structure of the medium-pore zeolite PST-35 with two interconnected cages of unusual orthorhombic shape

Supplementary files

Article information

Article type
Edge Article
Submitted
29 Jun 2022
Accepted
15 Aug 2022
First published
15 Aug 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2022,13, 10455-10460

Synthesis and structure of the medium-pore zeolite PST-35 with two interconnected cages of unusual orthorhombic shape

K. C. Kemp, W. Choi, D. Jo, S. H. Park and S. B. Hong, Chem. Sci., 2022, 13, 10455 DOI: 10.1039/D2SC03628B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements