Issue 47, 2022

Tuning reactivity in trimetallic dual-atom alloys: molecular-like electronic states and ensemble effects

Abstract

Single-atom alloys (SAAs) have drawn significant attention in recent years due to their excellent catalytic properties. Controlling the geometry and electronic structure of this type of localized catalytic active site is of fundamental and technological importance. Dual-atom alloys (DAAs) consisting of a heterometallic dimer embedded in the surface layer of a metal host would bring increased tunability and a larger active site, as compared to SAAs. Here, we use computational studies to show that DAAs allow tuning of the active site electronic structure and reactivity. Interestingly, combining two SAAs into a dual-atom site can result in molecular-like hybridization by virtue of the free-atom-like electronic d states exhibited by many SAAs. DAAs can inherit the weak d–d interaction between dopants and hosts from the constituent SAAs, but exhibit new electronic and reactive properties due to dopant–dopant interactions in the DAA. We identify many heterometallic DAAs that we predict to be more stable than either the constituent SAAs or homometallic dual-atom sites of each dopant. We also show how both electronic and ensemble effects can modify the strength of CO adsorption. Because of the molecular-like interactions that can occur, DAAs require a different approach for tuning chemical properties compared to what is used for previous classes of alloys. This work provides insights into the unique catalytic properties of DAAs, and opens up new possibilities for tailoring localized and well-defined catalytic active sites for optimal reaction pathways.

Graphical abstract: Tuning reactivity in trimetallic dual-atom alloys: molecular-like electronic states and ensemble effects

Supplementary files

Article information

Article type
Edge Article
Submitted
29 Jun 2022
Accepted
12 Nov 2022
First published
18 Nov 2022
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2022,13, 14070-14079

Tuning reactivity in trimetallic dual-atom alloys: molecular-like electronic states and ensemble effects

S. Zhang, E. C. H. Sykes and M. M. Montemore, Chem. Sci., 2022, 13, 14070 DOI: 10.1039/D2SC03650A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements