Issue 35, 2022

Data storage and encryption with a high security level based on molecular configurational isomers

Abstract

Developing advanced materials for highly secure data-encryption is crucial but very challenging, as most data-encryption materials (the message area) are chemically different from the substrates (the background) on which they are being written, leading to high risks of data leakage by deciphering via sophisticated instrumental analysis. Additionally, most materials require only one stimulus for decryption, resulting in a low-level of data-security. Here, a three configurational isomer-based data-encryption method is developed (i.e., propylamine, isopropylamine, and cyclopropylamine). Their similar molecular formulae, elemental constitution, and physiochemical properties make them ideal date-encryption materials. On the other hand, the significant differences in lower critical solution temperatures (LCST) of the corresponding polyacrylamides, i.e., 10 °C for poly(N-propylacrylamide), 32 °C for poly(N-isopropylacrylamide), and 53 °C for poly(N-cyclopropylacrylamide), respectively, render an effective method for data decryption. Relying on the above features, the data written by three isomers are well-hidden under given conditions. And a specific temperature range, rather than a simple temperature increase or decrease, would be required for decryption. Furthermore, undesired temperatures give wrong outputs, which is highly deceptive to the hacker. Therefore, a high-level of data security can be achieved. This result opens a new door for designing advanced materials for improving the data-security level.

Graphical abstract: Data storage and encryption with a high security level based on molecular configurational isomers

Supplementary files

Article information

Article type
Paper
Submitted
01 Jul 2022
Accepted
09 Aug 2022
First published
10 Aug 2022

Soft Matter, 2022,18, 6599-6606

Data storage and encryption with a high security level based on molecular configurational isomers

Y. Liu, J. Shen, Y. Dong, L. Zhu, C. Li, D. Wang and W. Huang, Soft Matter, 2022, 18, 6599 DOI: 10.1039/D2SM00890D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements