Issue 40, 2022

In situ preparation of hydroxyapatite in lamellar liquid crystals for joint lubrication and drug delivery

Abstract

Arthritis is a disease that seriously affects the quality of human life, which is partly caused by the reduction of joint lubrication performance. Thus, for the treatment of arthritis, how to improve the lubrication performance of joints is important. The lamellar liquid crystals (LLCs) systems have the potential to be used as joint lubrication due to their double-layer structure and good biocompatibility, however, the LLCs system alone could not provide a satisfactory lubrication effect. Herein, this work synthesized hydroxyapatite (HAP) in situ inside Tween 85/Tween 80/H2O LLCs to construct a biocompatible HAP/Tween 85/Tween 80/H2O LLCs (HAP/LLCs) lubrication system with both sustained drug release properties and anti-wear properties. HAP is the main component of bone with good stability and bioactivity. The LLCs have good lubricating and drug-carrying properties. The impact of HAP on the structure and lubrication properties of LLCs, the mechanism of friction, and the anti-wear reduction of HAP/LLCs were investigated. Moreover, the drug release behavior of the ibuprofen-loaded HAP/LLCs during the friction process was also studied. The results indicated that the addition of HAP could improve the lubricity performance of LLCs. The cumulative drug releasing increased with the friction frequency and was less affected by the load. The related studies provided the theoretical basis for HAP/LLCs for joint lubrication and synergistic therapy.

Graphical abstract: In situ preparation of hydroxyapatite in lamellar liquid crystals for joint lubrication and drug delivery

Supplementary files

Article information

Article type
Paper
Submitted
16 Aug 2022
Accepted
30 Sep 2022
First published
30 Sep 2022

Soft Matter, 2022,18, 7859-7865

In situ preparation of hydroxyapatite in lamellar liquid crystals for joint lubrication and drug delivery

L. Fan, C. Song, X. Lu, T. Wang, J. Han and R. Guo, Soft Matter, 2022, 18, 7859 DOI: 10.1039/D2SM01105K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements