Issue 11, 2022

C3 production from CO2 reduction by concerted *CO trimerization on a single-atom alloy catalyst

Abstract

The direct electroreduction of carbon dioxide (CO2) and carbon monoxide (CO) to C3 products is challenging. The main reason is the competitive C2 production resulting from a traditional sequential C–C coupling mechanism. As a result, most catalysts could not facilitate C3 products since the carbon chain growth from C2 to C3 competes with C2 desorption. In this work, we carried out Density Functional Theory (DFT) calculations with implicit solvation effects on densely arrayed Cu nanopyramids (Cu-DANs). We demonstrate that the co-adsorption energy of three *CO intermediates (ΔG3*CO; from the CO2 or CO reactant) is a descriptor for C3 activity. An activity volcano plot was constructed based on this discovery, which can be used to predict the optimal range for ΔG3*CO adsorption strength. We demonstrate that by applying the single-atom alloy catalyst strategy, i.e. embedding Ag single metal onto Cu-DANs, we could successfully tune the ΔG3*CO strength toward the optimal range. In addition, the adsorbed *CO could form a long carbon chain on such a structure via a one-step concerted trimerization mechanism to form the key C3 reaction intermediate, avoiding the competitive C2 desorption pathway. Furthermore, Ag-doped Cu-DANs could effectively retain oxygen atoms in the hydroxyl group, which enabled a pathway towards direct electrosynthesis of a new C3 product (C3H8O2; 1,2-PDO) beyond the only available n-propanol. Our newly discovered concerted trimerization mechanism in combination with single-atom alloy catalysts paves the way for materials design toward more long-chain oxygenate generation.

Graphical abstract: C3 production from CO2 reduction by concerted *CO trimerization on a single-atom alloy catalyst

Supplementary files

Article information

Article type
Paper
Submitted
09 Nov 2021
Accepted
14 Dec 2021
First published
14 Dec 2021

J. Mater. Chem. A, 2022,10, 5998-6006

C3 production from CO2 reduction by concerted *CO trimerization on a single-atom alloy catalyst

L. Chen, C. Tang, Y. Zheng, E. Skúlason and Y. Jiao, J. Mater. Chem. A, 2022, 10, 5998 DOI: 10.1039/D1TA09608G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements