Issue 19, 2022

One-step fabrication of robust lithium ion battery separators by polymerization-induced phase separation

Abstract

Conventional lithium ion battery separators are microporous polyolefin membranes that play a passive role in the electrochemical cell. Next generation separators should offer significant performance enhancements, while being fabricated through facile, low cost approaches with the ability to readily tune physicochemical properties. This study presents a single-step manufacturing technique based on UV-initiated polymerization-induced phase separation (PIPS), wherein microporous separators are fabricated from multifunctional monomers and ethylene carbonate (EC), which functions as both the pore-forming agent (porogen) and electrolyte component in the electrochemical cell. By controlling the ratio of the 1,4-butanediol diacrylate (BDDA) monomer to ethylene carbonate, monolithic microporous membranes are readily prepared with 25 μm thickness and pore sizes and porosities ranging from 6.8 to 22 nm and 15.4% to 38.5%, respectively. With 38.5% apparent porosity and an average pore size of 22 nm, the poly(1,4-butanediol diacrylate) (pBDDA) separator takes up 127% liquid electrolyte, resulting in an ionic conductivity of 1.98 mS cm−1, which is greater than in conventional Celgard 2500. Lithium ion battery half cells consisting of LiNi0.5Mn0.3Co0.2O2 cathodes and pBDDA separators were shown to undergo reversible charge/discharge cycling with an average discharge capacity of 142 mA h g−1 and a capacity retention of 98.4% over 100 cycles – comparable to cells using state-of-the-art separators. Moreover, similar discharge capacities were achieved in rate performance tests due to the high ionic conductivity and electrolyte uptake of the film. The pBDDA separators were shown to be thermally stable to 374 °C, lack low temperature thermal transitions that can compromise cell safety, and exhibit no thermal shrinkage up to 150 °C.

Graphical abstract: One-step fabrication of robust lithium ion battery separators by polymerization-induced phase separation

Supplementary files

Article information

Article type
Paper
Submitted
16 Dec 2021
Accepted
07 Apr 2022
First published
08 Apr 2022

J. Mater. Chem. A, 2022,10, 10557-10568

Author version available

One-step fabrication of robust lithium ion battery separators by polymerization-induced phase separation

A. J. Manly and W. E. Tenhaeff, J. Mater. Chem. A, 2022, 10, 10557 DOI: 10.1039/D1TA10730E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements