Functionalized luminescent covalent organic frameworks hybrid material as smart nose for the diagnosis of Huanglongbing†
Abstract
Quantitative identification of several volatile organic compounds (VOCs) associated with the same disease provides a strong guarantee of the accurate analysis of the disease. Designing a single luminescent material to interact differently with multiple analytes can generate response patterns with remarkable diversity. Here, a highly green luminescent imine-based 2D COF (TtDFP) is designed and synthesized. TtDFP has ultrasensitive detection performance for trace water in organic solvent. Constructing a ratiometric fluorescence sensor can improve sensitivity for detecting analytes. To contrast the fluorescence signals of Eu3+ and COFs in sensing assays, a simple postsynthetic modification (PSM) method is used to introduce Eu3+ into TtDFP. The obtained red luminescent hybrid material Eu3+@TtDFP EVA film can be a fluorescent nose capable of “sniffing out” and quantifying VOCs (GA and PhA) associated with Huanglongbing (HLB, a devastating disease of citrus) at ppb levels. This work provides a technique of developing functionalized COF hybrid material to facilitate the distinction of various VOCs, which can also be extended to monitor the levels of other VOCs relevant to human health.