Issue 19, 2023

Platform-agnostic electrochemical sensing app and companion potentiostat

Abstract

Electrochemical sensing is ubiquitous in a number of fields ranging from biosensing, to environmental monitoring through to food safety and battery or corrosion characterisation. Whereas conventional potentiostats are ideal to develop assays in laboratory settings, they are in general, not well-suited for field work due to their size and power requirements. To address this need, a number of portable battery-operated potentiostats have been proposed over the years. However, most open source solutions do not take full advantage of integrated circuit (IC) potentiostats, a rapidly evolving field. This is partly due to the constraining requirements inherent to the development of dedicated interfaces, such as apps, to address and control a set of common electrochemical sensing parameters. Here we propose the PocketEC, a universal app that has all the functionalities to interface with potentiostat ICs through a user defined property file. The versatility of PocketEC, developed with an assay developer mindset, was demonstrated by interfacing it, via Bluetooth, to the ADuCM355 evaluation board, the open-source DStat potentiostat and the Voyager board, a custom-built, small footprint potentiostat based around the LMP91000 chip. The Voyager board is presented here for the first time. Data obtained using a standard redox probe, Ferrocene Carboxylic Acid (FCA) and a silver ion assay using anodic stripping multi-step amperometry were in good agreement with analogous measurements using a bench top potentiostat. Combined with its Voyager board companion, the PocketEC app can be used directly for a number of wearable or portable electrochemical sensing applications. Importantly, the versatility of the app makes it a candidate of choice for the development of future portable potentiostats. Finally, the app is available to download on the Google Play store and the source codes and design files for the PocketEC app and the Voyager board are shared via Creative Commons license (CC BY-NC 3.0) to promote the development of novel portable or wearable applications based on electrochemical sensing.

Graphical abstract: Platform-agnostic electrochemical sensing app and companion potentiostat

Article information

Article type
Paper
Submitted
16 Aug 2022
Accepted
11 Jul 2023
First published
01 Aug 2023
This article is Open Access
Creative Commons BY license

Analyst, 2023,148, 4857-4868

Platform-agnostic electrochemical sensing app and companion potentiostat

V. Manoharan, R. Rodrigues, S. Sadati, M. J. Swann, N. Freeman, B. Du, E. Yildirim, U. Tamer, T. N. Arvanitis, D. Isakov, A. Asadipour and J. Charmet, Analyst, 2023, 148, 4857 DOI: 10.1039/D2AN01350A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements