Issue 16, 2023

A novel electrochemical detection method for butylated hydroxyanisole (BHA) as an antioxidant: a BHA imprinted polymer based on a nickel ferrite@graphene nanocomposite and its application

Abstract

A novel electrochemical detection method based on a nickel ferrite@graphene (NiFe2O4@Gr) nanocomposite-containing molecularly imprinted polymer (MIP) was developed for the sensitive determination of butylated hydroxyanisole (BHA). After successful completion of the nanocomposite production under hydrothermal conditions, the NiFe2O4@Gr nanocomposite and a novel molecularly imprinted sensor based on the NiFe2O4@Gr nanocomposite were characterized using microscopic, spectroscopic and electrochemical techniques. According to the characterization results, the synthesis of the core–shell type NiFe2O4@Gr nanocomposite with high purity and efficiency has been proved to be successful. After successful modification of a cleaned glassy carbon electrode (GCE) with the NiFe2O4@Gr nanocomposite, analytical applications were started with the prepared BHA printed GCE. This novel molecularly imprinted electrochemical sensor for BPA detection demonstrated a linearity of 1.0 × 10−11–1.0 × 10−9 M and a low detection limit (LOD, 3.0 × 10−12 M). In addition, the BHA imprinted polymer based on the NiFe2O4@Gr nanocomposite also exhibited excellent selectivity, stability, reproducibility and reusability performances in flour analysis.

Graphical abstract: A novel electrochemical detection method for butylated hydroxyanisole (BHA) as an antioxidant: a BHA imprinted polymer based on a nickel ferrite@graphene nanocomposite and its application

Supplementary files

Article information

Article type
Paper
Submitted
22 May 2023
Accepted
25 Jun 2023
First published
26 Jun 2023

Analyst, 2023,148, 3827-3834

A novel electrochemical detection method for butylated hydroxyanisole (BHA) as an antioxidant: a BHA imprinted polymer based on a nickel ferrite@graphene nanocomposite and its application

B. B. Yola, S. Bekerecioğlu, İ. Polat, N. Atar and M. L. Yola, Analyst, 2023, 148, 3827 DOI: 10.1039/D3AN00814B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements