Issue 23, 2023

Sensitively detecting endogenous homocysteine in human serum and cardiomyocytes with a specific fluorescent probe

Abstract

The elevated level of homocysteine (Hcy) in circulating blood is generally regarded as a risk factor for a variety of diseases including acute myocardial infarction (AMI), but there is no clear answer to whether circulating Hcy can be used for AMI diagnosis. To address it, here we have designed a tetraazacycle-based fluorescent probe for sensitive detection of endogenous Hcy in AMI patients’ serum and cardiomyocytes, showing a perfect selectivity over other biothiols (e.g. Cys and GSH). It mainly relies on the formation of a stable six-membered ring structure when this probe responds to Hcy, which is accompanied by a weakening of photoinduced electron transfer (PET) that induces a sharp increase in the fluorescence emission. In this way, Hcy can be probed in biofluids with high sensitivity. We then employed this fluorescent sensor to statistically analyze the levels of Hcy in human circulating blood, indicating a big difference between AMI patients and the healthy participants. To tell whether such a difference is applicable to AMI diagnosis, we further compare the expression levels of Hcy in cardiomyocytes and other tissue cells. It reveals a lower level of endogenous Hcy in cardiomyocytes, implying no direct relationship between the elevated Hcy and cardiomyocyte damage. This observation suggests that Hcy in circulating blood cannot be utilized as a potential biomarker for AMI diagnosis, although it is proven as a risk factor for this disease.

Graphical abstract: Sensitively detecting endogenous homocysteine in human serum and cardiomyocytes with a specific fluorescent probe

Supplementary files

Article information

Article type
Paper
Submitted
21 Aug 2023
Accepted
14 Sep 2023
First published
27 Sep 2023

Analyst, 2023,148, 5935-5941

Sensitively detecting endogenous homocysteine in human serum and cardiomyocytes with a specific fluorescent probe

H. Li, Q. Wang, L. Shi and T. Li, Analyst, 2023, 148, 5935 DOI: 10.1039/D3AN01430D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements