Implementation of charged microdroplet-based derivatization of bile acids on a cyclic ion mobility spectrometry-mass spectrometry platform†
Abstract
Herein, we report the first implementation of charged microdroplet-based derivatization on a commercially-available cyclic ion mobility spectrometry-mass spectrometry platform. We have demonstrated the potential of our approach to improve separability of challenging isomers, but more importantly to rapidly screen derivatization reactions through droplet chemistry. Additionally, the use of cyclic ion mobility separations and tandem mass spectrometry reveals insights into product formation that would be lost with single stage mass spectrometry. Overall, we anticipate broad utility of our methodology owing to the simple design and setup for performing these droplet-based reactions and future work coupling these reactions online with liquid chromatography.