Issue 11, 2023

Manganese supplementation of orthopedic implants: a new strategy for enhancing integrin-mediated cellular responses

Abstract

Integrin-mediated osteoblast adhesion to adsorbed extracellular ligands on orthopedic implants is crucial for the subsequent osteoblast behaviors and ultimate osseointegration. Considerable research efforts have focused on the development of implant surfaces that promote the adsorption of extracellular ligands, but ignored the fact that integrin binding to ligands requires divalent cations (such as Mn2+). Here, three kinds of Mn-doped nanowire-structured TiO2 coatings with 1.9, 3.9, and 8.8 wt% dopant contents (Mn1-, Mn2-, and Mn3-TiO2) were synthesized on Ti implants to enhance integrin-mediated osteoblastic responses. The Mg-doped and undoped TiO2 nanocoatings served as the control. Mn element was not only successfully incorporated into the TiO2 matrix, but also formed an oxygen-deficient Mn oxide on the nanowire surface. Although the adsorbed fibronectin (Fn) amount on Mn-doped nanocoatings and its unfolded status were slightly attenuated with increasing Mn amount, the interaction between the coating extract and Fn demonstrated a Mn2+-induced unfolding of Fn with the exposure of the RGD motif. Compared to the Mn1-, Mn2- and Mg-doped TiO2 nanocoatings, the Mn3-TiO2 nanocoating significantly upregulated the expression of integrin α5β1 probably through increasing the ligand-binding affinity of the integrin rather than integrin binding sites in Fn. Consistent with the activation trend of integrin α5β1, the Mn3-TiO2 nanocoating enhanced cell adhesion with the long stretched structure of actin fibers and extensive formation of vinculin focal adhesion spots and upregulated the levels of alkaline phosphatase and osteocalcin activities. Therefore, Mn supplementation of orthopedic implants may be a promising way to improve osteogenesis at the implant surface.

Graphical abstract: Manganese supplementation of orthopedic implants: a new strategy for enhancing integrin-mediated cellular responses

Supplementary files

Article information

Article type
Paper
Submitted
30 Dec 2022
Accepted
12 Apr 2023
First published
13 Apr 2023

Biomater. Sci., 2023,11, 3893-3905

Manganese supplementation of orthopedic implants: a new strategy for enhancing integrin-mediated cellular responses

K. Li, S. Liu, J. Li, D. Yi, D. Shao, T. Hu and X. Zheng, Biomater. Sci., 2023, 11, 3893 DOI: 10.1039/D2BM02165J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements