Programmable site-specific delivery of an alkaline phosphatase-activatable prodrug and a mitochondria-targeted cyclopeptide for combination therapy in colon cancer†
Abstract
The design of advanced carriers that enable time- or stimulus-programmed drug release holds great promise to enhance the treatment efficacy in tumors. Here, hyaluronic acid (HA)-coated liposomes were designed to efficiently deliver multi-organelle-targeted and ALP/GSH dual-responsive prodrugs for combination therapy on colon tumors. In this system (designated CPTP/RA-HALipo), the unique natural cyclopeptide RA-V was linked covalently to a near-infrared (NIR) fluorophore through a disulfide linker, which was subsequently loaded in the cationic liposome core of CPTP/RA-HALipo, while the ALP-activatable phosphate CPT (CPTP) was encapsulated in the HA shell. In the tumor microenvironment, the HA shell of CPTP/RA-HALipo was partially degraded by HAase, thereby allowing the release of CPTP. The released phosphate prodrug CPTP was activated through hydrolysis of the phosphate esters by brush border-associated enzymes. The cationic liposome coated with the remaining HA could selectively enter CD44 overexpressed cells via receptor-mediated endocytosis into the lysosome, in which the acidic microenvironment degraded the liposomes to release the mitochondria-targeted theranostic agent RA-S-S-Cy. More significantly, the GSH-activatable NIR fluorescence of Cy5.5 made it possible to realize in vivo and in situ dynamic monitoring of drug release in a noninvasive manner. The organelle-specific and multi-stimuli responsive nanoparticles have shown precise control over drug delivery and release, leading to superior in vitro and/or in vivo anti-cancer efficacy. This approach represents a novel interactive drug delivery system that can synergistically differentiate the extracellular, cell membranal and intracellular targets to promote spatial and temporal control of drug release.