Issue 51, 2023

Electrogenerated chemiluminescence at boron-doped diamond electrodes

Abstract

Electrogenerated chemiluminescence (ECL) refers to the phenomenon of light emission from molecular species which is triggered by an electrochemical reaction. Therefore, like most electrochemical systems, the electrode material plays a pivotal role and much effort has been made in order to find the best material for ECL, in terms of light signal intensity and long-term stability, especially after the development of ECL for analytical applications. In this article, we will introduce and highlight the distinctive features of boron-doped diamond (BDD) as an electrode material for ECL which has complementary properties compared to the most common metals (e.g., Au or Pt) and carbon materials (e.g., glassy carbon, carbon nanotubes and graphene). Boron-doped diamond electrodes emerged as novel electrodes, gaining more and more interest from the electrochemical community for their peculiar characteristics such as a wide solvent window, low capacitance, resistance to fouling and mechanical robustness. Furthermore, compared to metal electrodes, BDD does not form an oxide layer in aqueous solutions, and the sp3 carbon hybridization gives BDD the ability to enable peculiar electrochemical reactions that are not possible on sp2 carbon materials. Electrogenerated chemiluminescence investigations with boron-doped diamond electrodes have been reported for common ECL systems (luminophores and co-reactants), and special ECL that is only possible on BDD which includes the in situ electrochemical generation of the co-reactant.

Graphical abstract: Electrogenerated chemiluminescence at boron-doped diamond electrodes

Article information

Article type
Feature Article
Submitted
28 Mar 2023
Accepted
16 May 2023
First published
17 May 2023
This article is Open Access
Creative Commons BY-NC license

Chem. Commun., 2023,59, 7900-7910

Electrogenerated chemiluminescence at boron-doped diamond electrodes

A. Fiorani, G. Valenti, F. Paolucci and Y. Einaga, Chem. Commun., 2023, 59, 7900 DOI: 10.1039/D3CC01507F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements