Electrochemical nitrogen fixation on single metal atom catalysts
Abstract
The electrochemical reduction of nitrogen (eNRR) offers a promising alternative to the Haber–Bosch (H–B) process for producing ammonia under moderate conditions. However, the inertness of dinitrogen and the competing hydrogen evolution reaction pose significant challenges for eNRR. Thus, developing more efficient electrocatalysts requires a deeper understanding of the underlying mechanistic reactions and electrocatalytic activity. Single atom catalysts, which offer tunable catalytic properties and increased selectivity, have emerged as a promising avenue for eNRR. Carbon and metal-based substrates have proven effective for dispersing highly active single atoms that can enhance eNRR activity. In this review, we explore the use of atomically dispersed single atoms on different substrates for eNRR from both conceptual and experimental perspectives. The review is divided into four sections: the first section describes eNRR mechanistic pathways, the second section focuses on single metal atom catalysts (SMACs) with metal atoms dispersed on carbon substrates for eNRR, the third section covers SMACs with metal atoms dispersed on non-carbon substrates for eNRR, and the final section summarizes the remaining challenges and future scope of eNRR for green ammonia production.