The physical and electronic properties of Metal–Organic Frameworks containing dipyridylthiazolo[5,4-d]thiazole†
Abstract
Five Metal–Organic Frameworks ({[M2(tdc)2(L)2]·2DMF}, tdc = 2,5-thiophenedicarboxylate, M = ZnII (1–Zn), CuII (1–Cu), MnII (1–Mn), {[Zn(oba)(L)]·DMF·H2O} (2–Zn), oba = 4,4′-oxybisbenzoate, and {[Zn2(bpdc)2(L)2]·L}, (3–Zn) bpdc = 4,4′-biphenyldicarboxylate) that incorporate the redox-active 2,5-dipyridylthiazolo[5,4-d]thiazole (DPTzTz) ligand (L) have been synthesised and their electronic properties elucidated. The ligand-based organic radicals were generated using in situ techniques and monitored using a suite of solid-state spectroelectrochemistry techniques. The absence of a near infra-red band (NIR), indicating through-space intervalence charge transfer (IVCT), in all analysed materials suggests that both the inter-ligand distance between cofacial TzTz moieties and the flexibility of the TzTz moiety affect the through-space IVCT.