Metallic bonds and thermal vibration in brass†
Abstract
Nature of the metallic bond and thermal vibration in brass alloy is investigated from the local structural and thermodynamical points of view by the temperature-dependent Cu and Zn K-edge extended X-ray absorption fine structure spectroscopy and the path-integral effective classical potential theoretical simulation. It is unexpectedly found that the thermal vibrational amplitude around Zn is a little but meaningfully smaller than that around Cu, although it is usually believed that Zn is a much softer metal than Cu in terms of various thermodynamical physical quantities of elemental metals. Moreover, it is found that the nearest neighbor distance around Zn is almost equivalent to that around Cu (only ∼0.01 Å difference), although the metallic radius of Zn commonly used is considerably larger than that of Cu (∼0.06–0.09 Å difference). These peculiar findings can be interpreted as a result of confinement of Zn atoms in a smaller space than usual and a significantly larger repulsive potential of Zn than Cu.