Issue 9, 2023

Water model for hydrophobic cavities: structure and energy from quantum-chemical calculations

Abstract

This ab initio study aims to design a series of large water clusters having a hollow clathrate-like cage able to host hydrophobic solutes of various sizes. Starting from the (H2O)n (n = 18, 20, 24 and 28) hollow cages, water layers have been added in a stepwise manner in order to model the configuration of water molecules beyond the primary shell. The large (H2O)100, (H2O)120 and (H2O)140 clusters complete the hydrogen bonding network of the cage with optimal and regular tiling of the do-, tetra-decahedron and hexa-decahedron, respectively. This study is corroborated by an investigation of dense water clusters up to the (H2O)123 one, being highly consistent with experimental data on ice concerning the electronic and zero-point energies for aggregate formation at 0 K and enthalpy and entropy at 273 K. The cavity creation profoundly alters the orientation of water molecules compared with those found in dense clusters. Nevertheless, such a large reorganization is necessary to maximize the water–water attraction by making it similar to the one found in dense clusters. The cage formation is an endothermic process; however, the computed values are large compared with previous reports for hydrocarbon aqueous solutions. Larger clusters are required for a more fruitful comparison.

Graphical abstract: Water model for hydrophobic cavities: structure and energy from quantum-chemical calculations

Supplementary files

Article information

Article type
Paper
Submitted
05 Nov 2022
Accepted
26 Jan 2023
First published
26 Jan 2023
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2023,25, 6902-6913

Water model for hydrophobic cavities: structure and energy from quantum-chemical calculations

G. Lanza, Phys. Chem. Chem. Phys., 2023, 25, 6902 DOI: 10.1039/D2CP05195H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements