Issue 8, 2023

Modeling of minimal systems based on ATP-Zn coordination for chemically fueled self-assembly

Abstract

Following nature's example, there is currently strong interest in using adenosine 5′-triphosphate (ATP) as a fuel for the self-assembly of functional materials with transient/non-equilibrium behaviours. These hold great promise for applications, e.g. in catalysis and drug delivery. In a recent seminal work [Maiti et al., Nat. Chem., 2016, 8, 725], binding of ATP to the metallosurfactant zinc hexadecyl-1,4,7-triazacyclononane ([ZnC16 TACN]2+) was exploited to produce ATP-fueled transient vesicles. Crucial to the complex formation is the ability of ATP to bind to the metal ion. As a first step to unveil the key elements underlying this process, we investigate the interaction of ATP with Zn2+ and with methyl-1,4,7-triazacyclononane ([ZnCH3 TACN]2+), using all-atom molecular dynamics simulations. The free energy landscape of the complex formation is sampled using well-tempered metadynamics with three collective variables, corresponding to the coordination numbers of Zn2+ with the oxygen atoms of the three phosphate groups. We find that the structure of the ternary complex is controlled by direct triphosphate coordination to zinc, with a minor role played by the interactions between ATP and CH3 TACN which, however, may be important for the build-up of supramolecular assemblies.

Graphical abstract: Modeling of minimal systems based on ATP-Zn coordination for chemically fueled self-assembly

Supplementary files

Article information

Article type
Paper
Submitted
25 Nov 2022
Accepted
22 Jan 2023
First published
27 Jan 2023
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2023,25, 6102-6111

Modeling of minimal systems based on ATP-Zn coordination for chemically fueled self-assembly

E. Rossi, A. Ferrarini and M. Sulpizi, Phys. Chem. Chem. Phys., 2023, 25, 6102 DOI: 10.1039/D2CP05516C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements