Issue 5, 2023

Kinetic Monte Carlo simulation of polycrystalline silver metal electrodeposition: scaling of roughness and effects of deposition parameters

Abstract

In this work, a kinetic Monte Carlo (KMC) technique was used to simulate the growth morphology of electrodeposited polycrystalline Ag thin films under a galvanostatic condition (current density). The many-body Embedded Atom Method (EAM) potential has been used to describe the Ag–Ag atomic interaction. Herein, the surface morphology is affected by the kinetic diffusion of adatoms where four jump processes are considered, namely hopping, exchange, step-edge exchange and grain boundary. The results have shown that the surface roughness follows a power law behavior versus film thickness (∝Lα) and time (∝tβ), with the roughness and growth exponents α and β found to be α = 1.14 ± 0.01 and β = 0.57 ± 0.01. The surface morphology under different deposition parameters (current density and substrate temperature) has been discussed in detail. The surface roughness increases where the current density increases due to high deposition rates, which can accelerate the growth of island mode, especially on the (111) surface. In contrast, the surface roughness decreases the temperature of the substrate increases due to thermal agitation, allowing to transform nearly columnar grains to grains with a flat and smooth surface. Finally, the simulations provided information on the subsurface deposition rate of each grain that is not directly available for experimental investigations. It was observed that the (111) grain has a faster deposition rate compared to the (100) and (110) grains due to the low surface energy of the (111) grain.

Graphical abstract: Kinetic Monte Carlo simulation of polycrystalline silver metal electrodeposition: scaling of roughness and effects of deposition parameters

Article information

Article type
Paper
Submitted
09 Dec 2022
Accepted
29 Dec 2022
First published
19 Jan 2023

Phys. Chem. Chem. Phys., 2023,25, 4216-4229

Kinetic Monte Carlo simulation of polycrystalline silver metal electrodeposition: scaling of roughness and effects of deposition parameters

H. Ataalite, M. Dardouri, A. Arbaoui, A. Fathi, A. Hasnaoui and K. Sbiaai, Phys. Chem. Chem. Phys., 2023, 25, 4216 DOI: 10.1039/D2CP05766B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements