Issue 16, 2023

Examination of photocatalytic Z-scheme system for overall water splitting with its electronic structure

Abstract

Although the solar-to-hydrogen (STH) conversion efficiency of a photocatalytic Z-scheme system for overall water-splitting with a solid-state electron mediator composed of a hydrogen evolution cocatalyst (HEC) nanoparticles/hydrogen evolution photocatalyst (HEP) particle layer with an Rh,La-codoped SrTiO3/conductor with an Au/oxygen evolution photocatalyst (OEP) particle layer with Mo-doped BiVO4/oxygen evolution cocatalyst (OEC) nanoparticles reached the highest value (1.1%) in 2016, it was still insufficient for practical application, resulting in a proposal in a previous paper to develop HEP and OEP particles with longer wavelength absorption edges. While progress has been rather slow since then, the Z-scheme system has been analyzed in this paper from a new point of view, i.e., the electronic structure of the system on the basis of solid-state physics, in order to seek for new ideas to enhance its STH conversion efficiency. In addition to the proposal in the previous paper, new ideas in this paper include the formation of a built-in potential to enhance electron (positive hole) transfer from the HEP (OEP) to the HEC (OEC) by putting positive (negative) charges on the HEC (OEC) nanoparticles, enhancement of the reduction (oxidation) of water by an electron (a positive hole) transferred from the HEP (OEP) to the HEC (OEC) by using the quantum-size effect of HEC and OEC nanoparticles, enhancement of the transfer of a photo-created positive hole (electron) from the HEP (OEP) to the conductor by controlling the Schottky barrier between them, and enhancement of the movement of electronic charge carriers together with depression of their recombination in highly doped HEP and OEP particles by the use of ionic relaxation processes in the particles.

Graphical abstract: Examination of photocatalytic Z-scheme system for overall water splitting with its electronic structure

Supplementary files

Article information

Article type
Paper
Submitted
17 Jan 2023
Accepted
20 Mar 2023
First published
21 Mar 2023

Phys. Chem. Chem. Phys., 2023,25, 11418-11428

Examination of photocatalytic Z-scheme system for overall water splitting with its electronic structure

T. Tani, Y. Yamaguchi, T. Nishimi, T. Uchida and A. Kudo, Phys. Chem. Chem. Phys., 2023, 25, 11418 DOI: 10.1039/D3CP00241A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements