Issue 25, 2023

Degenerate and non-degenerate two-photon absorption of coumarin dyes

Abstract

Two-photon absorption (2PA) spectroscopy is a robust bioimaging tool that depends on the determined cross-sections (σ2PA). The absorption of both photons occurs simultaneously with equivalent (degenerate) or different (non-degenerate) photon energies, D-2PA and ND-2PA, respectively. The former has been investigated experimentally and computationally for many systems, while the latter remains relatively unexplored computationally and limited experimentally. In this study, response theory using time-dependent density functional theory (TD-DFT) and the 2-state model (2SM) have been utilized to investigate σD-2PA and σND-2PA for the excitation to the lowest energy singlet state (S1) of coumarin, coumarin 6, coumarin 120, coumarin 307, and coumarin 343. Solvents involved were methanol (MeOH), chloroform (ClForm), and dimethylsulfoxide (DMSO), where the latter leads to the largest σ2PA. Values of σ2PA are largest for coumarin 6 and lowest for coumarin, which illustrates the effect of substituents. The 2SM clarifies how the largest cross-sections correspond to molecules with the largest transition dipole moments, μ01. In general, σD-2SM computations agree with σD-2PA. Moreover, σND-2SM are in qualitative agreement with σND-2PA with comparable enhancement relative to σD-2PA. Overall, σND-2PA are larger than σD-2PA where the increase is in the range of 22% to 49%, depending on the coumarin as well as the relative energies of the two photons. This work aids in future investigations into various fluorophores to understand their photophysical properties for ND-2PA.

Graphical abstract: Degenerate and non-degenerate two-photon absorption of coumarin dyes

Supplementary files

Article information

Article type
Paper
Submitted
15 Feb 2023
Accepted
08 Jun 2023
First published
08 Jun 2023

Phys. Chem. Chem. Phys., 2023,25, 16772-16780

Degenerate and non-degenerate two-photon absorption of coumarin dyes

I. A. Elayan and A. Brown, Phys. Chem. Chem. Phys., 2023, 25, 16772 DOI: 10.1039/D3CP00723E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements