Abstract
UiO-66 is a Zr-based metal–organic framework (MOF) with exceptional chemical and thermal stability. The modular design of a MOF allows the tuning of its electronic and optical properties to obtain tailored materials for optical applications. Making use of the halogenation of the 1,4-benzenedicarboxylate (bdc) linker, the well-known monohalogenated UiO-66 derivatives were examined. In addition, a novel diiodo bdc based UiO-66 analogue is introduced. The novel UiO-66-I2 MOF is fully characterized experimentally. By applying density functional theory (DFT), fully relaxed periodic structures of the halogenated UiO-66 derivatives are generated. Subsequently, the HSE06 hybrid DFT functional is used to calculate the electronic structures and optical properties. The obtained band gap energies are validated with UV-Vis measurements to assure a precise description of the optical properties. Finally, the calculated refractive index dispersion curves are evaluated underlining the capabilities to tailor the optical properties of MOFs by linker functionalization.